2P05

多参照摂動法による内殻励起スペクトルに関する理論的研究

(豊田中研) 〇白井聡一, 倉本圭

shirai[at]mosk.tytlabs.co.jp (送信時は[at]を@に変更)

【緒言】X線吸収微細構造(XAFS)や電子エネルギー損失スペクトル(EELS)などにより得られる内殻 励起スペクトルを高精度に再現する方法を検討している。内殻電子の励起に伴い、分子の電子状態 は基底状態から大きく変化(緩和)する。この緩和と電子相関を共に考慮すれば、定量的精度が達成 される[1]。このうち、緩和は軌道凍結を応用した方法による SCF 計算により効率的に取り込むこと ができるが、active 空間の設定、収束解の妥当性など数点の問題を残していた[2]。それらを克服し た手法について報告する。

【方法】MCSCF を用いて目的とする内殻励起状態以下のエネルギーをもつすべての状態を考慮し つつ SCF 計算を行う。MCSCF に用いる空間は CAS が一般的であるが、CAS の次元は active 軌道・ 電子数に対して階乗オーダーとなるため、考慮すべき状態数が急増する。その問題を解決するため に配置選択を行い、CAS でない低次元の空間を構成した。MCSCF と同一の空間を参照とする多参 照摂動計算は、GAMESS に実装されている MCQDPT を改造して行った。

【計算結果】基底関数系としてcc-pVTZを使用し、 H2COのC, O、N2について1s-> π*励起エネルギ ーを計算した結果は実験値をよく再現した(Table 1)。N2では10g,10u軌道を局在化させ、対称性を 崩した内殻軌道を用いた。H2O について 1s->3s, 3p 内殻励起状態を計算した(Table 2)。これらの状態 を記述するため、広がった基底関数を含む aug-cc-pVTZ 基底関数系を使用した。ここで採用 した計算スキームでは、基底状態と内殻励起状態 を同じ構成の active 空間を用いて計算するため、 両状態の state-averaged MCSCF 関数が得られる。 その関数に基づいて遷移モーメントを計算し、状 態エネルギーと合わせて振動子強度を求めた (Table 2)。スピン-軌道相互作用によるピーク分裂 が起こる場合として、Ar の 2p->4s, Kr の 3d->5s 内殻励起状態を計算した(Table 3)。例えば Ar の 2p->4s 内殻励起状態は、非相対論の範囲において 得られる 6 状態について state-averaged MCSCF を 実施し、得られた関数に基づく spin-orbit MCQDPT を行って求めた。計算結果は分裂したいずれのピ ークについても高精度な再現を達成している。Kr では scalar 相対論的補正により実験値に歩み寄る 傾向が見られた。その他は当日発表する。

[1] S. Shirai, et. al., J. Chem. Phys. 121, 7586 (2004).

[4] A.P. Hitchcock, et. al., J. Electron Spectrosc. Rel. Phen. 18, 1 (1980)

[6] T. A. Carlson, et. al., Phys. Rev. A. **39**, 1170 (1989)

 Table 1
 Calculated and experimental 1s->p* core

 excitation energies of H2CO and N2 (in eV).

	-			
Molecule	Orbital	MCSCF	MCQDPT	Exptl.
H ₂ CO	C 1s	286.58 (+0.58)	286.07 (+0.07)	286.0 ^a
	O 1s	530.72 (-0.08)	531.25 (+0.45)	530.8 ^a
N ₂	N 1s	401.34 (+0.34)	401.37 (+0.37)	401.0 ^b

a. Ref[3] b. Ref[4]

 Table 2
 Calculated and experimental 1s->3s, 3p core excitation

 enegies and oscillator strength of H2O (energies are in eV. Relative

 oscillator strengths are in square brackets).

Molecule	State	Calc.	Exptl. ^a
H_2O	4a ₁	534.01 [43.6]	534.0 [85]
	2b ₂	535.81 [100]	535.9 [100]
	2b ₁	537.47 [54.3]	537.0 [32]
	5a ₁	537.66 [88.2]	

a. Ref[5]

 Table 3
 Calculated and experimental core excitation energies of Ar and Kr (in eV).

Atom	Transition	State	Non-rela.	Rela.	Exptl.
Ar	2p -> 4s	2p _{3/2}	244.22	244.26	244.39 ^a
			(-0.17)	(-0.13)	
		2p _{1/2}	246.35	246.40	246.51 ^a
			(-0.16)	(-0.11)	
Kr	3d -> 5s	3d _{5/2}	91.44	89.29	89.64 ^b
			(+1.80)	(-0.35)	
		3d _{3/2}	92.69	90.53	90.89 ^b
			(+1.80)	(-0.36)	

a. Ref[6] b. Ref[7]

ys. Rev. A. **39**, 1170 (1989) [7] Z.-S. Yuan, *et. al.*, Phys. Rev. A. **71**, 064701 (2005)

^[2] 分子構造討論会 2005(1P076)

^[3] D.P. Chong, et. al., Chem. Phys. Lett. 262, 729 (1996).

^[5] A. M. Bradshaw, et. al., Phys. Rev. A. 47, 1136 (1993)