************第53回尾張コンプレックスセミナー*************      題  目: F1-ATPaseの回転と共役したリン酸解離についての分 子シミュレーション Title :  Phosphate release coupled to rotary motion of F1-ATPase 発 表 者:  岡崎 圭一 Speaker :  Dr. Kei-ichi Okazaki 所  属: アメリカ国立衛生研究所 Affiliation:National Institutes of Health (NIH), USA 日  時:  7月18日(木)午後1時30分〜(約1時間) Date :  Thu. Jul. 18th, 13:30 pm (Almost one hour) 場  所: 情報科学研究科1階第2講義室 Place : 1F 2nd lecture Room, Graduate School of Information Science 内  容: ATP合成酵素において触媒部位をなす回転モーターF1-ATPaseは、 その化学力学共役メカニズムが最も詳細に調べられている分子モ ーターの1つである。しかしながら、リン酸解離のタイミングに ついては、1分子実験や結晶構造の結果から異なった説が唱えら れており議論を呼んでいる。そこで、全原子分子動力学シミュレ ーションにおいて回転子サブユニットにトルクをかけることで、 リン酸解離と回転運動の共役メカニズムとリン酸解離後の中間体 の構造を探った。さらに、リン酸解離を促進させたシミュレーシ ョンにより、その解離のタイミングと経路を明かにした。 Abstract: F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped mole- cular motor formed by three αβ-dimers creates torque on its central γ-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomi- stic conformation of the intermediate state following the 40°-substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the γ-subunit in the hydrolysis direction, the nucleotide-free αβE interface forming the “empty” E-site loosens and singly charged Pi readily escapes to the P-loop. By contrast, the interface stays closed with doubly charged Pi. The γ-rotation tightens the ATP-bound αβTP interface, as required for hydrolysis. The calculated rate for the outward-release of doubly charged Pi from the αβE interface 120° after ATP hydrolysis closely matches the ~1 ms functional timescale. Conversely, Pi release from the ADP-bound αβDP interface postulated in earlier models would occur through a kinetically infeasible inward-directed passage. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystal- lographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40o-substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin in spite of the different functional motions. ***********************************************************